
20

VOL 11 NO 2
2013

Architectural Aspect-
Oriented Dynamic Slicing

By Abhishek Ray, Siba Mishra and Durga Prasad Mohapatra PhD

A novel approach for dynamic slicing
of aspect-oriented software based on

UML 2.0 sequence diagrams is discussed in
this paper. To represent the classes, aspects,
pointcuts and advices in a single intermediate
graph is quite difficult and complex in nature.
Firstly, we construct an UML sequence diagram
representing all relevant information and
interaction between the classes, aspects,
pointcuts, join points and advices. Then,
an intermediate representation termed as
Aspect Model Dependency Graph (AMDG) is
constructed from the UML sequence diagram.
The concept of program slicing in UML models
is introduced as a mean to support software
maintenance through understanding, querying,
and analysis. For a given slicing criterion, our
proposed dynamic slicing algorithm traverses
the constructed AMDG to identify the parts
that are directly or indirectly affected during
the execution, by marking and unmarking the
edges of the AMDG when the dependencies
arise and cease during the run-time in a

specified scenario. The novelty of our approach
is that, it eliminates the use of trace files and no
new nodes are created during run-time. Also,
our approach captures and represents all the
necessary constructs between the classes and
aspects correctly.

Program slicing [3, 5, 11, 12, 21, 25, 28,
34, 36, 35, 37] was introduced by Mark Weiser
based on the observation that programmers
have some abstractions about the program
during debugging. Program slicing [3, 5, 11,
12, 21, 25, 28, 34, 36, 35, 37] can be defined
as a program analysis, decomposition and
practical disintegration software reverse
engineering technique that extracts certain
parts from program statements, relevant
to particular computation or some point of
interest, known as “slicing criterion”. The
impact, applications and power of program
slicing comes from the ability to assist the
researchers and software developers in lots
of tedious and error prone tasks such as
program debugging, testing, integration,

Slicing of AOP at Design phase reduces computation
time and increases testability and usability

Infosys Labs Briefings

21

software safety, understanding, re-engineering,
decompilation and software maintenance [3, 5,
11, 12, 21, 25, 28, 34, 36, 35, 37]. Slicing does this
by extracting an algorithm whose computation
may be scattered throughout a program from
intervening irrelevant statements specified
within the criterion.

Weiser’s [35, 36, 37] originally introduced
slicing. Static Slicing uses static analysis to derive
slices. The source code of the program is analyzed
and the slices are computed for all possible input
values. No assumptions may be made about the
input values, however, predicates may evaluate
either to true or false which leads to relatively
large slices. Korel and Laski [16] introduced
the concept of dynamic slicing which is used to
identify the parts of a program that contribute
to the computation of the selected function for
a given program execution (program input).
Dynamic slicing [16] may help to narrow down
the parts of program that contributes to the
computation function of interest for a particular
program input. Dynamic slices [16] are frequently
much smaller than static slices and thus used to
understand program execution. In a later work,
Korel [15] had shown that slicing could be used
as a reduction technique on specifications like
state based models.

Over a decade ago, Aspect-Oriented
Programming (AOP), [8, 9, 13, 18, 22] an
emerging programming paradigm have been
proposed by Gregor Kiczale’s team from Xerox
Palo Alto Research Centre (PARC). AOP allows
software developers to modularize cross cutting
concerns (whose implementations would
otherwise have been scattered throughout the
program, because of the limited abstractions).
A concern in mean of software development
can be understood as “a specific requirement
that must be addressed in order to satisfy the
overall system goal”. In the mean of software

development process, the non-functional
requirements can be considered as cross cutting
concerns. Some common examples of cross
cutting concerns are logging, transactions,
auditing and security developments in aspect-
oriented programming languages, such as
JBoss [1], AspectJ [7, 14, 19, 23] and Spring
AOP [2]. Programming mechanisms such as
composition, monitoring and refactoring,
have been the prominent reasons for adopting
AOP. While the emphasis has been on program
implementation, it has been argued that
applying aspect orientation at the design level
can also be beneficial [4, 6, 10].

During software development process,
in the design perspective, a software product is
ready to be implemented in some programming
languages. Usually, the slices are computed from
the program source code i.e. during the coding
phase of software development life cycle. An
alternative approach is to compute slices from
specifications like UML models [20, 30]. With
this, the slices are derived from the analysis
or design stage itself. This has the advantage
of allowing slices to be available early in the
software development cycle, thereby making
the design components more reusable. It also
makes automatic code generation possible for
AOP systems with higher levels of separation of
concerns at the generated code [4, 6, 10].

Slicing aspect-oriented based UML
models presents some new challenges and
difficulties, as the information about the
system is distributed across several model
views captured through a large number of
diagrams. The existing traditional slicing
approaches cannot be applied directly to AO
based UML diagrams, due to the presence of
special features in aspect-oriented programs
like aspects, pointcuts, join-points, advices etc.
which needs a lot of investigation, studies and

22

new ideas in order to achieve a high-level of
accuracy in formulating a suitable intermediate
representation and then computing the
dynamic slices.

To the best of our knowledge, no work
has been reported in the literature that describes
computation of dynamic slices from aspect-
oriented based UML models. In this paper, first
we construct a dependence based intermediate
representation to represent aspect-oriented
based UML sequence diagrams. Then, we
propose a slicing algorithm to compute the
dynamic slices using the above constructed
intermediate representation.

BASIC CONCEPTS
In this section, we present some basic concepts
of UML 2.0 sequence diagram that is relevant
to our work and an overview of aspect-oriented
modeling.

UML 2.0 Sequence Diagrams
The Unified Modeling Language (UML) is
a standard language for writing software
blueprints and can be defined as a modeling
l a n g u a g e f o r v i s u a l i z i n g , s p e c i f y i n g ,
constructing and documenting the artifacts
of a software-intensive system. Modeling
is a proven and well-accepted engineering
technique as it helps the users to communicate
with the desired structure and behaviour of
the system, visualizing and controlling the
system’s architecture, exposing opportunities
for simplification, reuse and to manage risk.

UML sequence diagrams are used to
show the flow of functionality through a use
case. They emphasize the time ordering of
messages and shows chronological sequence of
the messages, their names and responses and
their possible arguments. A sequence diagram is
formed by placing the objects that participate in

the interaction at the top of the diagram, across
the X axis. Typically, the object that initiates the
interaction is placed at the left, and increasingly
more subordinate objects are placed to the right.
Next, the messages that these objects send and
receive are placed along the Y axis, in order of
increasing time from top to bottom. This gives
the users a clear visual cue to the flow of control
over time.

In our work, we have considered the
aspect-oriented based UML 2.0 sequence
diagrams to compute the dynamic slices.
An example of aspect-oriented based UML 2.0
sequence diagrams is shown in Fig. 1. The vertical
dashed line in the diagram is called a lifeline
that represents the existence of an object over
a period of time. Most objects that appear in an
interaction diagram will be in existence for the
duration of the interaction, so these objects are
all aligned at the top of the diagram, with their
lifelines drawn from the top of the diagram to the
bottom. Arrows between the lifelines denotes the
communication between object instances using
messages. In the context of sequence diagram, a
message can be defined a request to the receiver
object to perform an operation. Synchronous call
messages are shown with filled arrow head. It
represents an operation call, i.e. first the message
is send then the execution is suspended, until
a response is acknowledged. Asynchronous call
message is shown with an open arrow head. In
asynchronous call, first a message is send and
the next message is send without receiving a
response of the first send message. The activation
(focus of control) is a tall, thin rectangle that
shows the period of time during which an object
is performing an action, either directly or through
a subordinate procedure. The top of the rectangle
is aligned with the start of the action and the
bottom of rectangle is aligned with its completion
(and can be marked by a return message).

23

UML 2.0 allows an element called
note, for adding additional information to
the sequence diagram. Generally notes are
represented in a dog-eared shaped rectangle
that is linked to the dashed lines of the lifelines.
A note may contain pre and post conditions
and constraints. In UML 2.0 more complex
interactions can be created with “combined
fragment”. A combined fragment consists of one
or more interaction operands. An interaction
operator kind specifies the purpose of the
fragment. Interaction constraints can guard
each interaction operand. Messages on their
own cannot cross the boundaries of combined
fragments, they need a gate which links the
two parts of the message. Through the use of
combined fragments, the understanding of
number of traces will be in a more compact and
concise manner. A combined fragment with an
operator alt (for alternative) is shown in Fig. 1.

Aspect-Oriented Modeling
With the advancements in AOP applications,
there is a need for addressing the concerns that
are scattered throughout the programs and also
the weaving mechanisms in the early phases
of aspect-oriented software development. It is
important that the system architectural design
is represented in a methodology that is easily
conveyed to the software practitioners. Therefore,
the use of Unified Modeling Language (UML)
in aspect-oriented programs specifies that
aspect-oriented design models should be used
to develop both the architectural design as well
as the software specifications. UML is widely
being used for representing and constructing
the architectural models of software systems. It
provides a wide range of visual artifacts to model
different aspects of a system. Thus the use of UML
in aspect-oriented modeling can be considered
as the key for conveying accurately the software

specifications that will be used to implement
the software. The use of UML in aspect-oriented
architectural and software design assures
traceability, provides a generic structure for
problem solving, furnishes abstractions to manage
complexity, reduces time-to-market for business
problem solutions, decreases development costs,
and manages the risk of mistakes.

To represent aspect-oriented based
UML sequence diagram (ASd), we need to find
the correct interaction of aspect with the base
system. As we know, aspects in AOP are similar
to classes in OOP. Aspect is the part of code
describing how pointcuts and advices should be
combined together. Join points are well defined
points in the execution of the code. Join Point
is a fundamental concept of AOP identifying
an execution point in a system. The categories
of join points available in AspectJ (A popular
AOP language) are method call and execution,
constructor call and execution, read/write
access to a field, exception handler execution,
and class initialization execution. Pointcuts are
used to select relevant join points. A pointcut
may select a call to a method and capture the
method’s context. In other words, we may say
that point cuts specify the weaving rules and
join point represent the situations satisfying
those rules. During the aspect-oriented
software design phase, we need to find how
to represent the relationship of the pointcut
and aspect. This relationship can be found
by studying the behaviour of join points with
their respective aspect through appropriate
pointcuts. We have represented all these three
constructs in a single diagram, which will
make easier to analyze and understand the
relationship between classes and aspects, while
computing the dynamic slices.

In our work, we have considered Online
railway reservation system as the running

24

Passenger: Database:

10. avail = check()
: boolean

16. f = match():
boolean

14. prompt the user to enter exact fare

13. [avail]

12. end enquiry

11. [! avail]

alt

alt

9. check for
availability

8. enquiry for trains in details (fare, timings, berths)

7. proceed to enquiry ()

6. Authorised user

5. [validate]

4. enter correct details

3. [! validate]

() : boolean
2. validate = authenticatecall(* Passenger.details())

1. <<pointcutExp>>
resrvmonitor

Service Monitor:

X

X

21. ticket is issued

20. updates
database

19. [f]

18. please enter the correct fare

17. [! f]alt X

Login:Access Control:

15. pay the exact journey fare [f] for issuing of ticket

Figure 1: An Aspect-oriented based UML Sequence Diagram
of online railway reservation system for issueticket use case

Source: Academic Research

example. Fig. 1 shows the aspect-oriented
(woven) sequence diagram (ASd) for issueticket
use case with the security concern AccessControl.
We have considered three base “system classes”
(Passenger, ServiceMonitor and Database),
one “aspect” (AccessControl) and one “around
advice” (login). The intervention of aspect plays
a vital role as it assures, the system security

by allowing the authenticate users for the
enquiry process. So, during the design phase,
a careful study has to be made for capturing
the interactions of classes and aspects. In our
diagram, we have considered details() method
of Passenger (base class) as join points which
is captured by pointcut resrvmonitor through a
“call” pointcut designator.

25

Pointcut designator can be defined as
a formula that specifies the set of join points
to which a piece of advice is applicable. A
“pointcut designator” identifies all types of
join points and matches the appropriate join
points at runtime. The authenticate users are
allowed to access the system. All the actions
for issueticket are depicted in Fig. 1 sequence
diagram as a series of events.

The around advice on resrvmonitor
(pointcut) in AccessControl aspect stops the
current process and takes over the control. It
results in two scenarios: either stopping the
current process or resuming the stopped process
by giving the control back. We have represented
the constraints “pointcut” in the sequence
diagram in Fig. 1 by a dotted line going from
the matching point at the base class Passenger
to the aspect AccessControl. This dotted line can
also be considered as synchronous message call
because it represents an operation call. Here,
first the message is sent and then the execution
is suspended, until a response is acknowledged.
It’s functionality in the diagram will be the same
as that of normal synchronous message calls.
We have made the arrows as dotted in order to
avoid the confusion of this call with the standard
synchronous message calls in sequence diagrams.
In Fig. 1, after validating the authenticate users,
control moves back to the suspended base
class Passenger, which resumes the process by
allowing authorized users for enquiry about the
details (availability, fare and berth) of trains.

DEFINITIONS AND TERMINOLOGIES
In this section, we present some basic definitions,
and terminologies associated with our proposed
intermediate program representation and
dynamic slicing algorithm. We have named
our proposed intermediate representation
to represent aspect-oriented based UML

2.0 sequence diagrams (ASd) Aspect Model
Dependency Graph (AMDG). AMDG represents
the interaction and behavioural aspects that are
modeled between the classes and aspects of a
system. The process of constructing an AMDG
involves combination of the nodes and edges,
where nodes represents a message or a note
and edges represents either data or control
dependences associated with the nodes. In the
absence of raw code, it is difficult to capture
the correct control and data dependences in
the architectural model. So, we have considered
messages and notes as “nodes” in our proposed
AMDG. An AMDG provides an integrated view
of the entire system.

Definition 1. Aspect Model Dependency Graph
(AMDG): We define Aspect Model Dependency
Graph (AMDG) as a directed graph G = (N, E),
where N is a set of nodes and E is a set of edges.
AMDG shows the dependency of a given node
on the other nodes. We have used AMDG as
the intermediate program representation in our
work. In this context, the node represents either
a message or a note in the sequence diagram
(ASd) and edges represent either control or data
dependences associated with the nodes. The
AMDG of the sequence diagram (ASd) given in
Fig. 1 is shown in Fig. 2.

Definition 2. Correct Dynamic Slice: A correct
dynamic slice contains all the statements that
affect the slicing criterion for a given input
value.

Definition 3. (recentDef(var)): For each variable
var, in the message (mes) of the sequence
diagram, recentDef(var) represents the node
corresponding to the most recent definition
of var with respect to some point s in an
execution.

26

Definition 4. (Def(var)): Let var be a variable
used in the sequence diagram. A node v of
the AMDG is said to be a Def(var) node if v
represents a definition (assignment) statement
that defines the variable var.

Definition 5. Data Dependence: A node n is said
to be data dependent on a node m, if there exists
a variable var in the sequence diagram such that
all of the following hold:

1.	 The node m defines var,
2.	 The node n uses var, and
3.	 T h e r e e x i s t s a d i r e c t e d p a t h

from m to n along which there is no
intervening definition of var.

Definition 6. dyslice(m): For each node m
of the AMDG (message m of the sequence
diagram), dyslice(m) represents the dynamic
slice with respect to the most recent execution
of node m.

ARCHITECTURAL ASPECT-ORIENTED
DYNAMIC SLICING
We have named our dynamic slicing algorithm
as Architectural Aspect-Oriented Dynamic
Slicing (AAODS) Algorithm. AAODS takes a
aspect-oriented based UML sequence diagram
and a slicing criterion as its input and produces
the computed dynamic slice as output. The
operation of our dynamic slicing algorithm
can be divided into three main phases: (i)
constructing AMDG statically, (ii) Managing
the AMDG during run-time and (iii) computing
the dynamic slice.

In the f irst step, the AMDGs are
constructed from a static analysis of the aspect-
oriented based UML 2.0 sequence diagrams. The
traversal of AMDG helps to identify different
architectural elements forming the slice. The
dynamic slice of an aspect-oriented based
UML sequence diagram is computed from its
corresponding AMDG. An AMDG is created
statically only once. For each message in the

1 2 3 4 5 6

13 14 15 16 17 18

19 20 21

8 97 10 11 12

Control Dependence Edges Data Dependence Edges

Figure 2: Aspect Model Dependency Graph (AMDG)
of Fig. 1

Source: Academic Research

27

sequence diagram, there will be a corresponding
node in the AMDG. After creating the AMDG
statically, our dynamic slicing algorithm marks
the corresponding nodes when dependencies
arise and unmarks them when the dependencies
cease during runtime. Then, we compute the
dynamic slice recursively, using Eq. 1. Let x1,
x2,…, xk be the nodes of the AMDG. During
the execution process of AMDG, let dyslice(m)
denote the dynamic slice with respect to the node
m for the most recent execution. Let (m, x1), (m,
x2), … ,(m, xk) be all the marked (control or data)
dependence edges of m in the updated AMDG.

[]

)(
...)(

)(
,...,,)(

2

1

21

k

k

xdyslice
xdyslice
xdyslice
xxxmdyslice

∪
∪∪

∪
=

(1)

Architectural Aspect-Oriented Dynamic
Slicing (AAODS) Algorithm
This subsection presents our AAODS algorithm
in pseudo-code form. First, we construct the
UML 2.0 sequence diagram and then represent
the sequence diagrams in XML format.

Algorithm: AAODS
Input: {Slicing Criterion}
Output: Dynamic Slice w.r.t. Slicing Criterion

Stage 1: Construction of AMDG statically

1. AMDG Construction
(a) Node Construction

For each message m represented by arrows
in the aspect-oriented based UML 2.0
sequence diagram (ASd), do the following:

	 A. Create a node for each message
	 of the sequence diagram.

	 B. Initialize the node with its type,
	 list of messages and variables
	 (if any) used or defined and its scope.

(b) A d d c o n t r o l d e p e n d e n c e e d g e s
	 for each test(predicate) node m, do the 	
	 following,

 for each node x within the scope of 	
	 the node m, do the following,

		 Add a control dependence edge
		 (m,x) and mark it.

(c) Add data dependence edges
	 for each node x, do the following,
	 for each message (mes) of the 		
	 sequence diagram (ASd), used at 		
	 node x, do the following,
	 for each reaching definition m of 	
	 (mes), do the following,
	 Add a data dependence edge 		
	 (m,x) and unmark it.

Stage 2: Managing the AMDG during run-time

1. Initialization. Do the following, before
traversing the intermediate dependence graph
(AMDG).

(a) Set dyslice(n) = Ø for every node		
 representing each message mes, of	
 the AMDG.

(b) Set recentDef(mes) = Ø for every 	
	 message mes of the sequence diagram
	 (ASd).

2. Run-time updations. Traverse the aspect-
oriented based sequence diagram (ASd), with the
given set of input values and do the following
after each message mes for the corresponding
node m of the sequence diagram is processed.

28

(a) F o r e a c h m e s s a g e m e s u s e d a t
 node m, do the following:

	 i. Unmark all the incoming marked
		 data dependence edges associated
		 with the message corresponding to
		 the previous execution of message
		 mes, with respect to node m.

	 ii. Mark the data dependence edge (n,r),
		 where r = (recentDef(m)).

(b) Update dynamic s l ice for dif ferent
 dependencies.

	 i. Handling data dependency. Let (r1, m),
		 (r2, m), … , (rj, m) be the set of marked
		 incoming data dependence edges to
		 node m in the AMDG. Then update the
		 dynamic slice set as:

[]

)(
...)(

)(
,...,,)(

2

1

21

j

k

rdyslice
rdyslice
rdyslice
rrrmdyslice

∪
∪∪

∪
=

where, r1,r2,...,rj are the initial vertices of the
corresponding marked incoming edges of node m.

	 ii.Handling control dependency. Let (c,m) be
		 the marked control dependence edge. Then
		 update the dynamic slice set as:

() ()
[])(cdyslicec

mdyslicemdyslice
∪∪

=

(c) If m is a Def(mes) message, then update
 recentDef(mes) = m.

(d) If m is a loop control node, then,

	 i. If this execution of m corresponds
		 to the entry to the loop, then mark each
		 control dependence edge (x,m).

	 ii. If this execution of m corresponds to
		 the exit of the loop, then unmark each
		 incoming control dependence edge (x,m).

Stage 3: Slice Look-Up:
1. If a slice command is given then carry the
following:
For every message mes, used at node m, do the
following:
	 i. Let (r,m) be a marked data dependence	
		 edge corresponding to the most recent
		 definition of message mes and (c,m) be
		 the marked control dependence edge.
		 Then

() [] ()
)(

,
cdyslice

rdyslicecrmdyslice
∪

∪=

	 ii. Look up dyslice(m) for the content
		 of the slice for message m.

2. If it encounters the terminate message, then
exit else go to Stage 2.

Working of the AAODS Algorithm
We illustrate the working of the algorithm with
the help of an example. Consider the aspect-
oriented based UML 2.0 sequence diagram of
online railway reservation system for issueticket
use case shown in Fig. 1 and the dependence
based intermediate program representation
(AMDG) shown in Fig. 2. The updated AMDG
after applying stage 2 of our AAODS algorithm
is shown in Fig. 3. We are interested to compute
the dynamic slice at message number 21 of
Fig. 1. So, let us assume the slicing criterion as
〈21, ticket〉, where 21 is the message number of
the sequence diagram and ticket is the variable

29

associated with message number 21 given in
Fig. 1. Now consider the input values validate
= “yes”, avail = “yes”, fare(f) = “1000” and f =
“yes”. We explain how our algorithm computes
the slice. To this input value, our AAODS
algorithm will execute the messages 1, 2, 5, 6, 7,
8, 9, 10, 13, 14, 15, 16, 19, 20, 21 in order. So, our
AAODS algorithm marks the edges (1, 2), (2,
5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 13), (13,
14), (14, 15), (15, 16), (16, 19), (19, 20), (20, 21).
During the Initialization step, our algorithm first
unmarks all the edges of AMDG, marks only the
control dependencies edges (m, x) for which x is
not a loop control node and sets the dyslice(n)
and recentDef(mes) as Ø, for every node n
representing each message mes, of the AMDG. In
our defined AMDG, message number 1 is control
dependent on message number 2, where 2 is not
a loop control node, so our algorithm marks the
control dependence edge (1, 2). Similarly, our
algorithm also marks the message number (7,
8) and (9, 10), which are control dependence
edges and not encountered in a loop. Similarly,

the algorithm also marks the data dependence
edges (2, 5), (8, 9), (10, 13), (15, 16), (16, 19). All
the marked edges in Fig. 3 are shown in bold
lines. Now we shall find a backward dynamic
slice computed with respect to slicing criterion
〈21, ticket〉. According to the AAODS algorithm,
the dynamic slice at node 21, (a message in
the aspect-oriented based UML 2.0 sequence
diagram (ASd)) is given by the expression:

() [] ()
)20(

1920,1921
dyslice

dyslicedyslice
∪

∪=

By evaluating the expression in a
recursive manner, we can get the final dynamic
slice for message number 21. During run-time,
the dynamic slice for each node is computed
immediately after the execution of the message.
Although message number 3, 4, 11, 12, 17, 18 can
be reached from message number 21, it cannot
be included in the dynamic slice. Our algorithm
successfully eliminates message numbers 3, 4,
11, 12, 17, 18 from the final resulting dynamic

1 2 3 4 5 6

13 14 15 16 17 18

19 20 21

8 97 10 11 12

Control Dependence Edges Data Dependence Edges

Figure 3: Aspect Model Dependency Graph (AMDG) of Fig. 1 Source: Academic Research

30

slice. The final dynamic slice includes the
nodes 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 19, 20,
21. The shaded vertices shown in Fig. 3 denote
the messages included in the dynamic slice
with respect to the slicing criterion 〈21, ticket〉.
Thus, our algorithm computes more precise and
correct dynamic slices.

Correctness of AAODS Algorithm
In this subsection, we sketch the proof of
correctness of our AAODS algorithm.

Theorem 1. AAODS algorithm always
finds a correct dynamic slice with respect to a
given slicing condition.

Proof : We can prove this through
mathematical induction. Let ASd be a sequence
diagram for which we want to compute
the dynamic slice using AAODS algorithm.
According to the definition, for any set of
input values, the computed dynamic slice
with respect to the first executed message is
certainly correct. Using this argument, we
establish that the dynamic slice with respect
to the second executed message is also correct.
During the execution, we assume that the
AAODS algorithm has produced correct
dynamic slice prior to the present execution
of a node s of the AMDG. Let var be a variable
used at s, and dyslice (s,var) be the dynamic
slice with respect to the slicing criterion 〈s,var〉
for the present execution of the node s. Let
the node d = (recentDef(var)) is the reaching
definition of the variable var for the present
execution of the node s. The node d is executed
prior to the current execution of the node s and
a dynamic slicing criterion, which contains all
those nodes that affect the current value of
variable var used or defined at s, our AAODS
algorithm has marked all the incoming edges
to d only from those nodes on which d is
dependent during execution. Further the steps

2(a), 2(c) and 2(d) of our algorithm ensures that
the node is data or control dependent on a node
v iff the edges (s,v) is marked in the updated
AMDG. Let x1,x2,...,xk be all the nodes on which
s is data or control dependent with respect to
its present execution.

[]

)(...
)()(

,...,,)(

21

21

k

k

xdyslice
xdyslicexdyslice

xxxmdyslice

∪∪
∪

∪=

Since, dyslice(x1) ... dyslice(xk) are all correct
dynamic slices, the dynamic slice dyslice(s)
computed by stage 2 of the algorithm must
also be correct. Further stage 3 of the algorithm
guarantees that the algorithm stops when
it encounters a termination message during
execution. This establishes the correctness of
the algorithm.

Complexity Analysis
In the following, we analyze the space and time
complexities of our AAODS algorithm.

Space Complexity: Let (ASd) be an aspect-
oriented UML 2.0 based sequence diagram
having a messages. The AMDG constructed
in the Stage 1 are directed graphs on nodes. A
graph on a nodes with optionally marked edges
requires 0(a2) space. So, the space requirement
for AMDG of (ASd) is 0(a2). We need the following
additional run-time space for managing the
intermediate program representation (AMDG).

1.	 To store the dyslice(m) for every message
of the sequence diagram (ASd), at most
0(a) space is required, as the maximum
size of the slice is equal to the number of
messages of the sequence diagram (ASd).
So, for a messages, the space requirement
for dyslice(m) is 0(a2).

31

2.	 To store (recentDef(var)) for every variable
of message (mes) of sequence diagram
(ASd), at most 0(a) space is required.

So, the space complexity of the AAODS
algorithm is 0(a2), where a is the number of
messages of the aspect-oriented based UML 2.0
sequence diagram.

Time Complexity: Let (ASd) be an aspect-
oriented based UML 2.0 sequence diagram
having a number of messages. To determine
the time complexity, we need to consider two
factors. The first one is the execution time
requirement for the run-time maintenance of
AMDG. The second one is the time required to
calculate the dyslice(m).

The time needed to store the required
information at each node is 0(a), where a is the
number of messages in the sequence diagram
(ASd). The time required for traversing the
complete AMDG is 0(a2), where is the number
of messages in the sequence diagram (ASd).
Hence, the worst case time complexity of our
AAODS algorithm for computing the dynamic
slice is 0(a2s), where s is the length (in time)
while traversing the AMDG and calculating
the dynamic slice by updating the dyslice set
for different existing dependencies.

COMPARISION WITH RELATED WORK
In the absence of any directly comparable work,
we compare our proposed algorithm with the
existing dynamic slicing algorithms of object-
oriented and aspect-oriented software. All
dynamic slicing algorithms for object-oriented
programs reported [21, 24, 25, 27, 28, 32, 38, 39]
were based on raw code for computation of the
slice. These reported works [21, 24, 25, 27, 28,
32, 38, 39] were not considered slicing of object-
oriented design models.

A number of algorithms computing
static and dynamic slicing of aspect-oriented
programs had been reported in literature [26,
29, 31, 33, 40, 41].

Zhao [40] was f irst to propose a
static slicing algorithm for aspect-oriented
program. He had proposed dependence
based intermediate representation of aspect-
oriented software called Aspect-oriented
System Dependence Graph (ASDG). This
graph is a combination of three parts: a System
Dependence Graph (SDG) [21] for non-aspect
code, a group of dependence graphs for aspect
code called as Advice Dependence Graph (ADG),
Introduction Dependence Graph (IDG) and Method
Dependence Graph (MDG) and some additional
dependence arcs used to connect the system
dependence graph to the dependence graphs
for aspect code. He had constructed ASDG
by first constructing the SDG [21] for the non-
aspect code and ADG for aspect code, and then
inserted the weaving vertices to the SDG. Then
he had used a coordination arc to connect each
weaving vertex to the advice start vertex of
its corresponding ADG. Next, he had added
a call arc between a call vertex and the start
vertex of the ADG, IDG, or MDG of the called
advice, introduction, or method. Next, Actual
and formal parameter vertices are connected
by parameter arc. He also added summary arcs
between the actual-in and actual-out vertices
at call sites for advices, introductions, or
methods in a previously analyzed aspect. Since
the author considers ASDG as an extension of
Larsen-Harrold SDG [21] he used two-pass
slicing algorithm proposed in [17] to compute
the static slice of an aspect-oriented program
based on the ASDG.

Zhao and Rinard [41] extended the
dependence-based representation technique for
AOP [40] to construct a SDG for aspect-oriented

32

program. Zhao [40] had not provided any
information to handle pointcut. In this paper
the authors had tried to handle the pointcuts
by constructing Module Dependence Graph
(MDG) for each piece of advice, introduction
and method in aspects and classes. It then
uses existing techniques for object-oriented
programs to connect these MDGs at call sites to
form a partial SDG. Finally, all MDGs of advice
and the partial SDG are weaved together for that
method whose behaviour may be affected by
the advice; hence the final SDG is constructed.

B r a a k [3 3] e x t e n d e d t h e A S D G
proposed by Zhao [40, 41] to include inter-
type declarations in the graph. Each inter-type
declaration was presented in form of a field or
a method as a successor of the particular class.
Then, Braak [33] used the two-phase slicing
algorithm of Horwitz et al. [12] to find static
slice of AspectJ program.

Sahu and Mohapatra [31] were the first
to propose an algorithm for dynamic slicing
of aspect-oriented programs named as Node-
Marking Dynamic Slicing (NMDS) algorithm.
They had used an intermediate representation
of aspect-oriented program called as Extended
Aspect-oriented System Dependence Graph.
The EASDG of an aspect-oriented program
consists of a System Dependence Graph (SDG)
of non-aspect code and an Aspect Dependence
Graph (ADG) for aspect code and some
additional dependence edges. The ADG is
constructed by combining the advice dependence
graph, introduction dependence graph, pointcut
dependence graph and method dependence graph.
A special vertex called as aspect entry vertex
used in ADG representing the entry point
into the aspect. All the members of aspect are
connected through aspect membership edges to
the aspect entry vertex. The complete EASDG
is constructed by connecting the SDG and ADG

by identifying the weaving vertices using a
special kind of edge called as weaving edges.
This EASDG is constructed statically only once
before the execution of the aspect-oriented
program. During the execution of program this
algorithm marks and unmarks the executed
nodes to calculate the dynamic slice of aspect-
oriented programs.

Mohapatra et al . [26] proposed a
dynamic slicing algorithm for aspect-oriented
program called Trace Based Dynamic Slice (TBDS)
algorithm. This algorithm uses a dependence-
based representation called Dynamic Aspect-
oriented Dependence Graph (DADG) as the
intermediate representation of program. The
DADG is an arc-classified digraph where all
the vertices of the graph correspond to the
statements and predicates of the program and all
the edges (arcs) between the vertices represents
dependence relationship between the statements.
A DADG consists of control dependence arc, data
dependence arc and weaving arc as the dependence
relationship arcs. The construction of DADG
of an aspect-oriented program is based on the
analysis of control and data flow of the program
at run time. Then they had used breadth-first or
depth-first order graph traversal over DADG to
compute the dynamic slice with respect to the
statement of interest (as defined in slicing criterion)
as the starting point of traversal.

Ray et al. [29] proposed a dynamic slicing
algorithm for aspect-oriented programs by
marking and unmarking the edges. Firstly, they
had constructed an intermediate representation
called Aspect System Dependence Graph
(AOSG). AOSG was constructed by combining
System Dependence Graph (SDG) of non-aspect
code and Aspect Dependence Graph (ADG)
of the aspect code with the help of aspect-
membership arcs. Then, they compute the
dynamic slice by updating AOSG.

33

All the above mentioned works were
concentrated on computing the slice by
considering the raw code of aspect-oriented
programs. They have not considered slicing
of aspect-oriented architectural models. But,
our algorithm computes the dynamic slice of
aspect-oriented software at architectural level.

Lallchandani et al . [20] proposed
an algorithm for computing the dynamic
slicing for UML architectural model. In their
approach they considered a generic class and
sequence diagrams for object-oriented software.
Then, they have constructed an intermediate
representation termed as Model Dependency
Graph (MDG) by combining Class Dependency
Graph (CDG) and Sequence Dependency
Graph (SDG) where the CDG and SDG are
constructed from the generic class and sequence
diagrams respectively. The slices are computed
by updating the MDG. But, they have not
considered any aspect-oriented constructs in
their intermediate representation as well as in
the proposed slicing algorithms. In our work,
we have considered the AOP constructs such
as pointcuts, advices, joinpoints, etc. both in
the intermediate representation and the slicing
algorithm.

CONCLUSION
In this paper, we have proposed a novel
dynamic slicing algorithm for aspect-oriented
based UML 2.0 sequence diagrams. We have
considered the modeling of aspect-oriented
programs using sequence diagrams. However,
our work can be easily extended to handle other
UML 2.0 diagrams and models. We have used
the Aspect Model Dependency Graph (AMDG)
as the intermediate program representation.
Our proposed Architectural Aspect-Oriented
Dynamic Slicing (AAODS) algorithm is based on
marking and unmarking the edges of the AMDG

as and when the dependencies arise and cease at
run-time. The computed slices can be used for
studying the impact of design changes, reliability
prediction, understanding large architectures,
regression testing, etc. The advantage of our
approach is that when a request for a slice is
made, it is already available and it can be readily
obtained through a mere table looks up. We
are now extending the intermediate model to
support both class and sequence diagrams of
aspect-oriented UML models.

REFERENCES
1.	 JBoss Aspect Oriented Programming.

http://labs.jboss.com/portal/jbossaop.
2.	 Spring framework. 		

http://www.springframework.org/
docs/reference/aop.html.

3.	 Agrawal, H. and Horgan, J. (1990).
Dynamic program slicing. SIGPLAN
Not., 25(6), pp.246-256.

4.	 Aldawud, O., Elrad, T. and Bader,
A. (2001), A UML profile for AOP. In
OOPSLA, workshop on Aspect Oriented
Programming.

5.	 Binkely D, and K. B. Gallagher (1996).
Program Slicing. Technical report,
Academic Press,San Diego,CA.

6.	 Bustos, A. and Eterovic, Y. (2007)
M o d e l i n g a s p e c t s w i t h U M L ' S
class, sequence and state diagrams
in an industrial setting. In IASTED
International Conference on Software
Engineering and Applications, pages
403-410. ACTA Press.

7.	 Colyer, A. Clement, A., Harley, G. and
Webster, M. (2004), Eclipse AspectJ:
Aspect-Oriented Programming with
Aspect J and the Ec l ipse Aspect J
Development Tools. Addison Wesley
Professional.

34

8.	 Georgieva, K. (2009), Testing Methods
and Approaches in Aspect-Oriented
Programs. Master's thesis, Department
of Computer Science, University of
Magdeburg, Germany.

9.	 Gradecki, J. and Lesiecki, N. (2003),
Mastering AspectJ. Wiley Publishing,
Indianapolis, Indiana.

10.	Gupta, P., Garg, S. and Khalon, K. (2011),
Designing aspects using various UML
diagrams in resource-pool management.
International Journal Of Advanced
Engineering Sciences And Technologies
(IJAEST), 7(2), pp. 228-233.

11.	Horwitz, S., Prins, J. and Reps. T. (1989),
Integrating noninterfering versions
of programs. ACM Transactions on
Programming Languages and Systems,
11(3).

12.	Horwitz, S., Reps, T. and Binkley. D.
(1990), Interprocedural Slicing Using
Dependence Graphs. ACM Transaction
on Programming Languages and
Systems, 12(1), pp. 26-61.

13.	Kiczales, G. and Mezini, M. (2005), Aspect-
Oriented Programming and Modular
Reasoning. In Proceedings of ICSE.

14.	Kiselev, I. (2003), Aspect-Oriented
Programming with AspectJ . Sams
Publishing.

15.	Korel, B. and Ferguson, R. (1992).
Dynamic slicing of distributed programs.
Applied Mathematics and Computer
Science 2.

16.	Korel B. and Laski, J. (1988), Dynamic
Program Slicing. Information Processing
Letters, 29(9), pp. 155-163.

17.	Korel B. and Laski, J. (1990), Dynamic
slicing of computer programs. Journal of
Systems and Software, 13(3), pp. 187-195.

18.	Krupa. A. (2010), Analyze Aspect-

Oriented Software Approach and Its
Application. Master's thesis, Department
Of Information Systems And Programs,
Athabasca, Alberta.

19.	Laddad, R (2003), AspectJ in Action.
Manning Publications Co.

20.	Lallchandani, J. and Mall, R. (2011).
A dynamic slicing technique for UML
architectural models. IEEE Transactions
on Software Engineering, 37(6).

21.	Larsen, L. and Harrold, M. (1996), Slicing
object-oriented software. In Proceedings
of 18th International Conference on
Software Engineering, pages 495-505,
1996.

22.	Mendhekar , A. , Kiczales , G. and
Lamping, R. (1997), A Case-Study
for Aspect-Oriented Programming.
Technical report, Xerox Palo Alto
Research Centre.

23.	Russell Miles. AspectJ Cookbook.
O'Reilly, 1005 Gravenstein Highway
North, Sebastopol, December 2004.

24.	D. P. Mohapatra, R. Kumar, and R.
Mall. Computing dynamic slices of
concurrent object-oriented programs.
Information & Software Technology,
47(12):805-817, 2005.

25.	D. P. Mohapatra, R. Kumar, and R. Mall.
An Overview of Slicing Techniques for
Object Oriented Programs. Informatica,
30(2):253-277, 2006.

26.	D. P. Mohapatra, M. Sahu, R. Kumar,
and R. Mall. Dynamic Slicing of Aspect-
Oriented Programs. Informat ica ,
32(3):261-274, 2008.

27.	Mohapatra, D. (2005), Dynamic Slicing
of Object-Oriented Programs. PhD
thesis, Department of Computer Science
and Engineering, Indian Institute of
Technology, Kharagpur.

35

28.	Mohapatra, D., Mall, R., and Kumar.
R. (2004), An edge marking technique
for dynamic slicing of object-oriented
programs. In COMPSAC, pp.60-65.

29.	Ray, A., Mishra, S. and Mohapatra, D
(2012), A Novel Approach for Computing
Dynamic Slices of Aspect-Oriented
Programs. International Journal of
Computer Information Systems, 4(9),
pp. 6-12.

30.	Rumbaugh, J., Jacobson, I. and Booch, G
(1998). The Unified Modeling Language
Reference Manual. ADDISON-WESLEY.

31.	Sahu, M. and Mohapatra, D. (2007). A
Node-Marking Technique for Dynamic
Slicing of Aspect-Oriented Programs.
In Proceedings of 10th International
Conference On Information Technology,
pp.155-160.

32.	Steindl, C. (1999). Program Slicing
for Object-Oriented Programming
Languages. PhD thesis, Johannes Kepler
University Linz.

33.	ter Braak, T. (2006). Extending Program
Slicing in Aspect-Oriented Programming
with Inter-Type Declarat ions . In
Proceedings of 5th Twente Student
Conference on IT.

34.	Tip, F. (1995). A Survey of Program Slicing
Techniques. Journal of Programming
Languages, 3:121-189.

35.	Weiser, M. (1979), Program slices:
formal, psychological, and practical
investigations of an automatic program
abstrac t ion method. PhD thes is ,
University of Michigan, Ann Arbor, MI.

36.	 Weiser, M. (1981), Program slicing. In
Proceedings of the 5th International
Conference on Software Engineering,
ICSE, pages 439-449, Piscataway, NJ,
USA. IEEE Press.

37.	Mark Weiser. Programmers Use Slices
with Debugging. Communications of the
ACM, pages 446-452, July 1982.

38.	B. Xu and Z. Chen. Dynamic Slicing
O b j e c t - O r i e n t e d P r o g r a m s f o r
Debugging. In Proceedings of SCAM
2002, pages 115-122, 2002.

39.	J. Zhao. Dynamic Slicing of Object-
Oriented Programs. Technical report,
Information Processing Society of Japan,
1998.

40.	J . Zhao. S l ic ing Aspect -Oriented
Software. In Proceedings of 10th
International Workshop On Program
Slicing, pages 251-260, June 2002.

41.	J . Z h a o a n d M . R i n a r d . S y s t e m
Dependence Graph Construction for
Aspect-Oriented Programs. Technical
report, Laboratory Of Computer Science,
Massachusetts institute of Technology,
USA,March 2003.

For information on obtaining additional copies, reprinting or translating articles, and all other correspondence,

please contact:

Email: InfosyslabsBriefings@infosys.com

© Infosys Limited, 2013

Infosys acknowledges the proprietary rights of the trademarks and product names of the other

companies mentioned in this issue of Infosys Labs Briefings. The information provided in this

document is intended for the sole use of the recipient and for educational purposes only. Infosys

makes no express or implied warranties relating to the information contained in this document or to

any derived results obtained by the recipient from the use of the information in the document. Infosys

further does not guarantee the sequence, timeliness, accuracy or completeness of the information and

will not be liable in any way to the recipient for any delays, inaccuracies, errors in, or omissions of,

any of the information or in the transmission thereof, or for any damages arising there from. Opinions

and forecasts constitute our judgment at the time of release and are subject to change without notice.

This document does not contain information provided to us in confidence by our clients.	

Author’s Profiles

ABHISHEK RAY is an Associate Professor with School Of Computer Engineering, KIIT University,
Bhubaneswar. He can be contacted at ar_mmclub@yahoo.com.

SIBA MISHRA received his M.TECH from KIIT University, Bhubaneswar, Odisha, India. His research
interests include Software Engineering, Automata Theory, and Discrete Mathematics. He can be contacted
at sibamishra@yahoo.co.in.

DURGA PRASAD MOHAPATRA PhD is Associate Professor in the Department of CSE at the National
Institute of Technology, Rourkela. He can be contacted at durga@nitrkl.ac.in.

