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A novel approach for dynamic slicing 
of aspect-oriented software based on 

UML 2.0 sequence diagrams is discussed in 
this paper. To represent the classes, aspects, 
pointcuts and advices in a single intermediate 
graph is quite difficult and complex in nature. 
Firstly, we construct an UML sequence diagram 
representing all relevant information and 
interaction between the classes, aspects, 
pointcuts, join points and advices. Then, 
an intermediate representation termed as 
Aspect Model Dependency Graph (AMDG) is 
constructed from the UML sequence diagram. 
The concept of program slicing in UML models 
is introduced as a mean to support software 
maintenance through understanding, querying, 
and analysis. For a given slicing criterion, our 
proposed dynamic slicing algorithm traverses 
the constructed AMDG to identify the parts 
that are directly or indirectly affected during 
the execution, by marking and unmarking the 
edges of the AMDG when the dependencies 
arise and cease during the run-time in a 

specified scenario. The novelty of our approach 
is that, it eliminates the use of trace files and no 
new nodes are created during run-time. Also, 
our approach captures and represents all the 
necessary constructs between the classes and 
aspects correctly.

Program slicing [3, 5, 11, 12, 21, 25, 28, 
34, 36, 35, 37] was introduced by Mark Weiser 
based on the observation that programmers 
have some abstractions about the program 
during debugging. Program slicing [3, 5, 11, 
12, 21, 25, 28, 34, 36, 35, 37] can be defined 
as a program analysis, decomposition and 
practical disintegration software reverse 
engineering technique that extracts certain 
parts from program statements, relevant 
to particular computation or some point of 
interest, known as “slicing criterion”. The 
impact, applications and power of program 
slicing comes from the ability to assist the 
researchers and software developers in lots 
of tedious and error prone tasks such as 
program debugging, testing, integration, 
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software safety, understanding, re-engineering, 
decompilation and software maintenance [3, 5, 
11, 12, 21, 25, 28, 34, 36, 35, 37]. Slicing does this 
by extracting an algorithm whose computation 
may be scattered throughout a program from 
intervening irrelevant statements specified 
within the criterion.

Weiser’s [35, 36, 37] originally introduced 
slicing. Static Slicing uses static analysis to derive 
slices. The source code of the program is analyzed 
and the slices are computed for all possible input 
values. No assumptions may be made about the 
input values, however, predicates may evaluate 
either to true or false which leads to relatively 
large slices. Korel and Laski [16] introduced 
the concept of dynamic slicing which is used to 
identify the parts of a program that contribute 
to the computation of the selected function for 
a given program execution (program input). 
Dynamic slicing [16] may help to narrow down 
the parts of program that contributes to the 
computation function of interest for a particular 
program input. Dynamic slices [16] are frequently 
much smaller than static slices and thus used to 
understand program execution. In a later work, 
Korel [15] had shown that slicing could be used 
as a reduction technique on specifications like 
state based models.

Over a decade ago, Aspect-Oriented 
Programming (AOP), [8, 9, 13, 18, 22] an 
emerging programming paradigm have been 
proposed by Gregor Kiczale’s team from Xerox 
Palo Alto Research Centre (PARC). AOP allows 
software developers to modularize cross cutting 
concerns (whose implementations would 
otherwise have been scattered throughout the 
program, because of the limited abstractions). 
A concern in mean of software development 
can be understood as “a specific requirement 
that must be addressed in order to satisfy the 
overall system goal”. In the mean of software 

development process, the non-functional 
requirements can be considered as cross cutting 
concerns. Some common examples of cross 
cutting concerns are logging, transactions, 
auditing and security developments in aspect-
oriented programming languages, such as 
JBoss [1], AspectJ [7, 14, 19, 23] and Spring 
AOP [2]. Programming mechanisms such as 
composition, monitoring and refactoring, 
have been the prominent reasons for adopting 
AOP. While the emphasis has been on program 
implementation, it has been argued that 
applying aspect orientation at the design level 
can also be beneficial [4, 6, 10].

During software development process, 
in the design perspective, a software product is 
ready to be implemented in some programming 
languages. Usually, the slices are computed from 
the program source code i.e. during the coding 
phase of software development life cycle. An 
alternative approach is to compute slices from 
specifications like UML models [20, 30]. With 
this, the slices are derived from the analysis 
or design stage itself. This has the advantage 
of allowing slices to be available early in the 
software development cycle, thereby making 
the design components more reusable. It also 
makes automatic code generation possible for 
AOP systems with higher levels of separation of 
concerns at the generated code [4, 6, 10].

Slicing aspect-oriented based UML 
models presents some new challenges and 
difficulties, as the information about the 
system is distributed across several model 
views captured through a large number of 
diagrams. The existing traditional slicing 
approaches cannot be applied directly to AO 
based UML diagrams, due to the presence of 
special features in aspect-oriented programs 
like aspects, pointcuts, join-points, advices etc. 
which needs a lot of investigation, studies and 
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new ideas in order to achieve a high-level of 
accuracy in formulating a suitable intermediate 
representation and then computing the 
dynamic slices.

To the best of our knowledge, no work 
has been reported in the literature that describes 
computation of dynamic slices from aspect-
oriented based UML models. In this paper, first 
we construct a dependence based intermediate 
representation to represent aspect-oriented 
based UML sequence diagrams. Then, we 
propose a slicing algorithm to compute the 
dynamic slices using the above constructed 
intermediate representation.

BASIC CONCEPTS
In this section, we present some basic concepts 
of UML 2.0 sequence diagram that is relevant 
to our work and an overview of aspect-oriented 
modeling.

UML 2.0 Sequence Diagrams
The Unified Modeling Language (UML) is 
a standard language for writing software 
blueprints and can be defined as a modeling 
l a n g u a g e  f o r  v i s u a l i z i n g ,  s p e c i f y i n g , 
constructing and documenting the artifacts 
of a software-intensive system. Modeling 
is a proven and well-accepted engineering 
technique as it helps the users to communicate 
with the desired structure and behaviour of 
the system, visualizing and controlling the 
system’s architecture, exposing opportunities 
for simplification, reuse and to manage risk.

UML sequence diagrams are used to 
show the flow of functionality through a use 
case. They emphasize the time ordering of 
messages and shows chronological sequence of 
the messages, their names and responses and 
their possible arguments. A sequence diagram is 
formed by placing the objects that participate in 

the interaction at the top of the diagram, across 
the X axis. Typically, the object that initiates the 
interaction is placed at the left, and increasingly 
more subordinate objects are placed to the right. 
Next, the messages that these objects send and 
receive are placed along the Y axis, in order of 
increasing time from top to bottom. This gives 
the users a clear visual cue to the flow of control 
over time.

In our work, we have considered the 
aspect-oriented based UML 2.0 sequence 
diagrams to compute the dynamic slices. 
An example of aspect-oriented based UML 2.0 
sequence diagrams is shown in Fig. 1. The vertical 
dashed line in the diagram is called a lifeline 
that represents the existence of an object over 
a period of time. Most objects that appear in an 
interaction diagram will be in existence for the 
duration of the interaction, so these objects are 
all aligned at the top of the diagram, with their 
lifelines drawn from the top of the diagram to the 
bottom. Arrows between the lifelines denotes the 
communication between object instances using 
messages. In the context of sequence diagram, a 
message can be defined a request to the receiver 
object to perform an operation. Synchronous call 
messages are shown with filled arrow head. It 
represents an operation call, i.e. first the message 
is send then the execution is suspended, until 
a response is acknowledged. Asynchronous call 
message is shown with an open arrow head. In 
asynchronous call, first a message is send and 
the next message is send without receiving a 
response of the first send message. The activation 
(focus of control) is a tall, thin rectangle that 
shows the period of time during which an object 
is performing an action, either directly or through 
a subordinate procedure. The top of the rectangle 
is aligned with the start of the action and the 
bottom of rectangle is aligned with its completion  
(and can be marked by a return message).
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UML 2.0 allows an element called 
note, for adding additional information to 
the sequence diagram. Generally notes are 
represented in a dog-eared shaped rectangle 
that is linked to the dashed lines of the lifelines. 
A note may contain pre and post conditions 
and constraints. In UML 2.0 more complex 
interactions can be created with “combined 
fragment”. A combined fragment consists of one 
or more interaction operands. An interaction 
operator kind specifies the purpose of the 
fragment. Interaction constraints can guard 
each interaction operand. Messages on their 
own cannot cross the boundaries of combined 
fragments, they need a gate which links the 
two parts of the message. Through the use of 
combined fragments, the understanding of 
number of traces will be in a more compact and 
concise manner. A combined fragment with an 
operator alt (for alternative) is shown in Fig. 1.

Aspect-Oriented Modeling
With the advancements in AOP applications, 
there is a need for addressing the concerns that 
are scattered throughout the programs and also 
the weaving mechanisms in the early phases 
of aspect-oriented software development. It is 
important that the system architectural design 
is represented in a methodology that is easily 
conveyed to the software practitioners. Therefore, 
the use of Unified Modeling Language (UML) 
in aspect-oriented programs specifies that 
aspect-oriented design models should be used 
to develop both the architectural design as well 
as the software specifications. UML is widely 
being used for representing and constructing 
the architectural models of software systems. It 
provides a wide range of visual artifacts to model 
different aspects of a system. Thus the use of UML 
in aspect-oriented modeling can be considered 
as the key for conveying accurately the software 

specifications that will be used to implement 
the software. The use of UML in aspect-oriented 
architectural and software design assures 
traceability, provides a generic structure for 
problem solving, furnishes abstractions to manage 
complexity, reduces time-to-market for business 
problem solutions, decreases development costs, 
and manages the risk of mistakes.

To represent aspect-oriented based 
UML sequence diagram (ASd), we need to find 
the correct interaction of aspect with the base 
system. As we know, aspects in AOP are similar 
to classes in OOP. Aspect is the part of code 
describing how pointcuts and advices should be 
combined together. Join points are well defined 
points in the execution of the code. Join Point 
is a fundamental concept of AOP identifying 
an execution point in a system. The categories 
of join points available in AspectJ (A popular 
AOP language) are method call and execution, 
constructor call and execution, read/write 
access to a field, exception handler execution, 
and class initialization execution. Pointcuts are 
used to select relevant join points. A pointcut 
may select a call to a method and capture the 
method’s context. In other words, we may say 
that point cuts specify the weaving rules and 
join point represent the situations satisfying 
those rules.  During the aspect-oriented 
software design phase, we need to find how 
to represent the relationship of the pointcut 
and aspect. This relationship can be found 
by studying the behaviour of join points with 
their respective aspect through appropriate 
pointcuts. We have represented all these three 
constructs in a single diagram, which will 
make easier to analyze and understand the 
relationship between classes and aspects, while 
computing the dynamic slices.

In our work, we have considered Online 
railway reservation system as the running 
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Passenger: Database:

10. avail = check()
: boolean

16. f = match():
boolean

14. prompt the user to enter exact fare

13. [avail]

12. end enquiry

11. [ ! avail]

alt

alt

9. check for
availability 

8. enquiry for trains in details (fare, timings, berths)

7. proceed to enquiry ()

6. Authorised user

5. [validate]

4. enter correct details

3. [ ! validate]

() : boolean
2. validate = authenticatecall(* Passenger.details())

1. <<pointcutExp>>
resrvmonitor

Service Monitor:

X

X

21. ticket is issued

20. updates
database

19. [f]

18. please enter the correct fare

17. [  ! f  ]alt X

Login:Access Control:

15. pay the exact journey fare [ f ] for issuing of ticket

Figure 1: An Aspect-oriented based UML Sequence Diagram 
of online railway reservation system for issueticket use case

Source: Academic Research

example. Fig. 1 shows the aspect-oriented 
(woven) sequence diagram (ASd) for issueticket 
use case with the security concern AccessControl. 
We have considered three base “system classes” 
(Passenger, ServiceMonitor and Database), 
one “aspect” (AccessControl) and one “around 
advice” (login). The intervention of aspect plays 
a vital role as it assures, the system security 

by allowing the authenticate users for the 
enquiry process. So, during the design phase, 
a careful study has to be made for capturing 
the interactions of classes and aspects. In our 
diagram, we have considered details() method 
of Passenger (base class) as join points which 
is captured by pointcut resrvmonitor through a 
“call” pointcut designator. 
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Pointcut designator can be defined as 
a formula that specifies the set of join points 
to which a piece of advice is applicable. A 
“pointcut designator” identifies all types of 
join points and matches the appropriate join 
points at runtime. The authenticate users are 
allowed to access the system. All the actions 
for issueticket are depicted in Fig. 1 sequence 
diagram as a series of events.

The around advice on resrvmonitor 
(pointcut) in AccessControl aspect stops the 
current process and takes over the control. It 
results in two scenarios: either stopping the 
current process or resuming the stopped process 
by giving the control back. We have represented 
the constraints “pointcut” in the sequence 
diagram in Fig. 1 by a dotted line going from 
the matching point at the base class Passenger 
to the aspect AccessControl. This dotted line can 
also be considered as synchronous message call 
because it represents an operation call. Here, 
first the message is sent and then the execution 
is suspended, until a response is acknowledged. 
It’s functionality in the diagram will be the same 
as that of normal synchronous message calls. 
We have made the arrows as dotted in order to 
avoid the confusion of this call with the standard 
synchronous message calls in sequence diagrams. 
In Fig. 1, after validating the authenticate users, 
control moves back to the suspended base 
class Passenger, which resumes the process by 
allowing authorized users for enquiry about the 
details (availability, fare and berth) of trains.

DEFINITIONS AND TERMINOLOGIES
In this section, we present some basic definitions, 
and terminologies associated with our proposed 
intermediate program representation and 
dynamic slicing algorithm. We have named 
our proposed intermediate representation 
to represent aspect-oriented based UML 

2.0 sequence diagrams (ASd) Aspect Model 
Dependency Graph (AMDG). AMDG represents 
the interaction and behavioural aspects that are 
modeled between the classes and aspects of a 
system. The process of constructing an AMDG 
involves combination of the nodes and edges, 
where nodes represents a message or a note 
and edges represents either data or control 
dependences associated with the nodes. In the 
absence of raw code, it is difficult to capture 
the correct control and data dependences in 
the architectural model. So, we have considered 
messages and notes as “nodes” in our proposed 
AMDG. An AMDG provides an integrated view 
of the entire system.

Definition 1. Aspect Model Dependency Graph 
(AMDG): We define Aspect Model Dependency 
Graph (AMDG) as a directed graph G = (N, E), 
where N is a set of nodes and E is a set of edges. 
AMDG shows the dependency of a given node 
on the other nodes. We have used AMDG as 
the intermediate program representation in our 
work. In this context, the node represents either 
a message or a note in the sequence diagram 
(ASd) and edges represent either control or data 
dependences associated with the nodes. The 
AMDG of the sequence diagram (ASd) given in 
Fig. 1 is shown in Fig. 2.

Definition 2. Correct Dynamic Slice: A correct 
dynamic slice contains all the statements that 
affect the slicing criterion for a given input 
value.

Definition 3. (recentDef(var)): For each variable 
var, in the message (mes) of the sequence 
diagram, recentDef(var) represents the node 
corresponding to the most recent definition 
of var with respect to some point s in an 
execution.
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Definition 4. (Def(var)): Let var be a variable 
used in the sequence diagram. A node v of 
the AMDG is said to be a Def(var) node if v 
represents a definition (assignment) statement 
that defines the variable var.

Definition 5. Data Dependence: A node n is said 
to be data dependent on a node m, if there exists 
a variable var in the sequence diagram such that 
all of the following hold:

1.	 The node m defines var,
2.	 The node n uses var, and
3.	 T h e r e  e x i s t s  a  d i r e c t e d  p a t h  

from m to n along which there is no 
intervening definition of var.

Definition 6. dyslice(m): For each node m 
of the AMDG (message m of the sequence 
diagram), dyslice(m) represents the dynamic 
slice with respect to the most recent execution 
of node m.

ARCHITECTURAL ASPECT-ORIENTED 
DYNAMIC SLICING
We have named our dynamic slicing algorithm 
as Architectural Aspect-Oriented Dynamic 
Slicing (AAODS) Algorithm. AAODS takes a 
aspect-oriented based UML sequence diagram 
and a slicing criterion as its input and produces 
the computed dynamic slice as output. The 
operation of our dynamic slicing algorithm 
can be divided into three main phases: (i) 
constructing AMDG statically, (ii) Managing 
the AMDG during run-time and (iii) computing 
the dynamic slice.

In the f irst  step,  the AMDGs are 
constructed from a static analysis of the aspect-
oriented based UML 2.0 sequence diagrams. The 
traversal of AMDG helps to identify different 
architectural elements forming the slice. The 
dynamic slice of an aspect-oriented based 
UML sequence diagram is computed from its 
corresponding AMDG. An AMDG is created 
statically only once. For each message in the 

1 2 3 4 5 6

13 14 15 16 17 18

19 20 21

8 97 10 11 12

Control Dependence Edges Data Dependence Edges

Figure 2: Aspect Model Dependency Graph (AMDG) 
of Fig. 1

Source: Academic Research
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sequence diagram, there will be a corresponding 
node in the AMDG. After creating the AMDG 
statically, our dynamic slicing algorithm marks 
the corresponding nodes when dependencies 
arise and unmarks them when the dependencies 
cease during runtime. Then, we compute the 
dynamic slice recursively, using Eq. 1. Let x1, 
x2,…, xk be the nodes of the AMDG. During 
the execution process of AMDG, let dyslice(m) 
denote the dynamic slice with respect to the node 
m for the most recent execution. Let (m, x1), (m, 
x2), … ,(m, xk) be all the marked (control or data) 
dependence edges of m in the updated AMDG.

[ ]

)(
...)(

)(
,...,,)(

2

1

21

k

k

xdyslice
xdyslice
xdyslice
xxxmdyslice

∪
∪∪

∪
=

(1)

Architectural Aspect-Oriented Dynamic 
Slicing (AAODS) Algorithm
This subsection presents our AAODS algorithm 
in pseudo-code form. First, we construct the 
UML 2.0 sequence diagram and then represent 
the sequence diagrams in XML format.

Algorithm: AAODS
Input: {Slicing Criterion} 
Output: Dynamic Slice w.r.t. Slicing Criterion

Stage 1: Construction of AMDG statically

1. AMDG Construction
(a) Node Construction

For each message m represented by arrows 
in the aspect-oriented based UML 2.0 
sequence diagram (ASd), do the following:

	 A. Create a node for each message 
	      of the sequence diagram.

	 B. Initialize the node with its type,  
	    list of messages and variables  
	       (if any) used or defined and its scope.

( b )  A d d  c o n t r o l  d e p e n d e n c e  e d g e s  
	 for each test(predicate) node m, do the 	
	 following,

    for each node x within the scope of 	
	    the node m, do the following,

		         Add a control dependence edge  
		            (m,x) and mark it.

(c) Add data dependence edges
	 for each node x, do the following,
	 for each message (mes) of the 		
	 sequence diagram (ASd), used at 		
	 node x, do the following,
	 for each reaching definition m of 	
	 (mes), do the following,
	        Add a data dependence edge 		
	        (m,x) and unmark it.

Stage 2: Managing the AMDG during run-time 

1. Initialization. Do the following, before 
traversing the intermediate dependence graph 
(AMDG).

(a) Set dyslice(n) = Ø for every node		
     representing each message mes, of	
     the AMDG.

(b) Set recentDef(mes) = Ø for every   	
	 message mes of the sequence diagram                     
	 (ASd).

2. Run-time updations. Traverse the aspect-
oriented based sequence diagram (ASd), with the 
given set of input values and do the following 
after each message mes for the corresponding 
node m of the sequence diagram is processed.
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( a )  F o r  e a c h  m e s s a g e  m e s  u s e d  a t  
         node m, do the following:

	 i. Unmark all the incoming marked
		  data dependence edges associated
		  with the message corresponding to
		  the previous execution of message
		  mes, with respect to node m.

	 ii. Mark the data dependence edge (n,r),
		  where r = (recentDef(m)).

(b)  Update dynamic s l ice  for  dif ferent  
       dependencies.

	 i. Handling data dependency. Let (r1, m),
		  (r2, m), … , (rj, m) be the set of marked 
		  incoming data dependence edges to 
		  node m in the AMDG. Then update the 
		  dynamic slice set as:

[ ]

)(
...)(

)(
,...,,)(

2

1

21

j

k

rdyslice
rdyslice
rdyslice
rrrmdyslice

∪
∪∪

∪
=

where, r1,r2,...,rj are the initial vertices of the 
corresponding marked incoming edges of node m.

	 ii.Handling control dependency. Let (c,m) be 
		  the marked control dependence edge. Then  
		  update the dynamic slice set as:

( ) ( )
[ ] )(cdyslicec

mdyslicemdyslice
∪∪

=

(c) If m is a Def(mes) message, then update 
      recentDef(mes) = m.

(d)  If m is a loop control node, then,

	 i. If this execution of m corresponds
		  to the entry to the loop, then mark each
		  control dependence edge (x,m).

	 ii. If this execution of m corresponds to
		   the exit of the loop, then unmark each 
		   incoming control dependence edge (x,m).

Stage 3: Slice Look-Up:
1. If a slice command is given then carry the 
following:
For every message mes, used at node m, do the 
following:
	 i. Let (r,m) be a marked data dependence	
		  edge corresponding to the most recent 
		  definition of message mes and (c,m) be
		  the marked control dependence edge.  
		  Then

( ) [ ] ( )
)(

,
cdyslice

rdyslicecrmdyslice
∪

∪=

	 ii. Look up dyslice(m) for the content 
		  of the slice for message m.

2. If it encounters the terminate message, then 
exit else go to Stage 2.

Working of the AAODS Algorithm
We illustrate the working of the algorithm with 
the help of an example. Consider the aspect-
oriented based UML 2.0 sequence diagram of 
online railway reservation system for issueticket 
use case shown in Fig. 1 and the dependence 
based intermediate program representation 
(AMDG) shown in Fig. 2. The updated AMDG 
after applying stage 2 of our AAODS algorithm 
is shown in Fig. 3. We are interested to compute 
the dynamic slice at message number 21 of  
Fig. 1. So, let us assume the slicing criterion as 
〈21, ticket〉, where 21 is the message number of 
the sequence diagram and ticket is the variable 
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associated with message number 21 given in 
Fig. 1. Now consider the input values validate 
= “yes”, avail = “yes”, fare(f) = “1000” and f = 
“yes”. We explain how our algorithm computes 
the slice. To this input value, our AAODS 
algorithm will execute the messages 1, 2, 5, 6, 7, 
8, 9, 10, 13, 14, 15, 16, 19, 20, 21 in order. So, our 
AAODS algorithm marks the edges (1, 2), (2, 
5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 13), (13, 
14), (14, 15), (15, 16), (16, 19), (19, 20), (20, 21). 
During the Initialization step, our algorithm first 
unmarks all the edges of AMDG, marks only the 
control dependencies edges (m, x) for which x is 
not a loop control node and sets the dyslice(n) 
and recentDef(mes) as Ø, for every node n 
representing each message mes, of the AMDG. In 
our defined AMDG, message number 1 is control 
dependent on message number 2, where 2 is not 
a loop control node, so our algorithm marks the 
control dependence edge (1, 2). Similarly, our 
algorithm also marks the message number (7, 
8) and (9, 10), which are control dependence 
edges and not encountered in a loop. Similarly, 

the algorithm also marks the data dependence 
edges (2, 5), (8, 9), (10, 13), (15, 16), (16, 19). All 
the marked edges in Fig. 3 are shown in bold 
lines. Now we shall find a backward dynamic 
slice computed with respect to slicing criterion 
〈21, ticket〉. According to the AAODS algorithm, 
the dynamic slice at node 21, (a message in 
the aspect-oriented based UML 2.0 sequence 
diagram (ASd)) is given by the expression:

( ) [ ] ( )
)20(

1920,1921
dyslice

dyslicedyslice
∪

∪=

By evaluating the expression in a 
recursive manner, we can get the final dynamic 
slice for message number 21. During run-time, 
the dynamic slice for each node is computed 
immediately after the execution of the message. 
Although message number 3, 4, 11, 12, 17, 18 can 
be reached from message number 21, it cannot 
be included in the dynamic slice. Our algorithm 
successfully eliminates message numbers 3, 4, 
11, 12, 17, 18 from the final resulting dynamic 

1 2 3 4 5 6

13 14 15 16 17 18

19 20 21

8 97 10 11 12

Control Dependence Edges Data Dependence Edges

Figure 3: Aspect Model Dependency Graph (AMDG) of Fig. 1 Source: Academic Research
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slice. The final dynamic slice includes the 
nodes 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 19, 20, 
21. The shaded vertices shown in Fig. 3 denote 
the messages included in the dynamic slice 
with respect to the slicing criterion 〈21, ticket〉. 
Thus, our algorithm computes more precise and 
correct dynamic slices.

Correctness of AAODS Algorithm
In this subsection, we sketch the proof of 
correctness of our AAODS algorithm.

Theorem 1. AAODS algorithm always 
finds a correct dynamic slice with respect to a 
given slicing condition.

Proof :  We can prove this  through 
mathematical induction. Let ASd be a sequence 
diagram for which we want to compute 
the dynamic slice using AAODS algorithm. 
According to the definition, for any set of 
input values, the computed dynamic slice 
with respect to the first executed message is 
certainly correct. Using this argument, we 
establish that the dynamic slice with respect 
to the second executed message is also correct. 
During the execution, we assume that the 
AAODS algorithm has produced correct 
dynamic slice prior to the present execution 
of a node s of the AMDG. Let var be a variable 
used at s, and dyslice (s,var) be the dynamic 
slice with respect to the slicing criterion 〈s,var〉 
for the present execution of the node s. Let 
the node d = (recentDef(var)) is the reaching 
definition of the variable var for the present 
execution of the node s. The node d is executed 
prior to the current execution of the node s and 
a dynamic slicing criterion, which contains all 
those nodes that affect the current value of 
variable var used or defined at s, our AAODS 
algorithm has marked all the incoming edges 
to d only from those nodes on which d is 
dependent during execution. Further the steps 

2(a), 2(c) and 2(d) of our algorithm ensures that 
the node is data or control dependent on a node 
v iff the edges (s,v) is marked in the updated 
AMDG. Let x1,x2,...,xk be all the nodes on which 
s is data or control dependent with respect to 
its present execution.
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Since, dyslice(x1) ... dyslice(xk) are all correct 
dynamic slices, the dynamic slice dyslice(s) 
computed by stage 2 of the algorithm must 
also be correct. Further stage 3 of the algorithm 
guarantees that the algorithm stops when 
it encounters a termination message during 
execution. This establishes the correctness of 
the algorithm.

Complexity Analysis
In the following, we analyze the space and time 
complexities of our AAODS algorithm.

Space Complexity: Let (ASd) be an aspect-
oriented UML 2.0 based sequence diagram 
having a messages. The AMDG constructed 
in the Stage 1 are directed graphs on nodes. A 
graph on a nodes with optionally marked edges 
requires 0(a2) space. So, the space requirement 
for AMDG of (ASd) is 0(a2). We need the following 
additional run-time space for managing the 
intermediate program representation (AMDG).

1.	 To store the dyslice(m) for every message 
of the sequence diagram (ASd), at most 
0(a) space is required, as the maximum 
size of the slice is equal to the number of 
messages of the sequence diagram (ASd). 
So, for a messages, the space requirement 
for dyslice(m) is 0(a2).
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2.	 To store (recentDef(var)) for every variable 
of message (mes) of sequence diagram 
(ASd), at most 0(a) space is required.

So, the space complexity of the AAODS 
algorithm is 0(a2), where a is the number of 
messages of the aspect-oriented based UML 2.0 
sequence diagram.

Time Complexity: Let (ASd) be an aspect-
oriented based UML 2.0 sequence diagram 
having a number of messages. To determine 
the time complexity, we need to consider two 
factors. The first one is the execution time 
requirement for the run-time maintenance of 
AMDG. The second one is the time required to 
calculate the dyslice(m).

The time needed to store the required 
information at each node is 0(a), where a is the 
number of messages in the sequence diagram 
(ASd). The time required for traversing the 
complete AMDG is 0(a2), where is the number 
of messages in the sequence diagram (ASd). 
Hence, the worst case time complexity of our 
AAODS algorithm for computing the dynamic 
slice is 0(a2s), where s is the length (in time) 
while traversing the AMDG and calculating 
the dynamic slice by updating the dyslice set 
for different existing dependencies.

COMPARISION WITH RELATED WORK
In the absence of any directly comparable work, 
we compare our proposed algorithm with the 
existing dynamic slicing algorithms of object-
oriented and aspect-oriented software. All 
dynamic slicing algorithms for object-oriented 
programs reported [21, 24, 25, 27, 28, 32, 38, 39] 
were based on raw code for computation of the 
slice. These reported works [21, 24, 25, 27, 28, 
32, 38, 39] were not considered slicing of object-
oriented design models.

A number of algorithms computing 
static and dynamic slicing of aspect-oriented 
programs had been reported in literature [26, 
29, 31, 33, 40, 41].

Zhao [40]  was f irst  to  propose a 
static slicing algorithm for aspect-oriented 
program. He had proposed dependence 
based intermediate representation of aspect-
oriented software called Aspect-oriented 
System Dependence Graph (ASDG). This 
graph is a combination of three parts: a System 
Dependence Graph (SDG) [21] for non-aspect 
code, a group of dependence graphs for aspect 
code called as Advice Dependence Graph (ADG), 
Introduction Dependence Graph (IDG) and Method 
Dependence Graph (MDG) and some additional 
dependence arcs used to connect the system 
dependence graph to the dependence graphs 
for aspect code. He had constructed ASDG 
by first constructing the SDG [21] for the non-
aspect code and ADG for aspect code, and then 
inserted the weaving vertices to the SDG. Then 
he had used a coordination arc to connect each 
weaving vertex to the advice start vertex of 
its corresponding ADG. Next, he had added 
a call arc between a call vertex and the start 
vertex of the ADG, IDG, or MDG of the called 
advice, introduction, or method. Next, Actual 
and formal parameter vertices are connected 
by parameter arc. He also added summary arcs 
between the actual-in and actual-out vertices 
at call sites for advices, introductions, or 
methods in a previously analyzed aspect. Since 
the author considers ASDG as an extension of 
Larsen-Harrold SDG [21] he used two-pass 
slicing algorithm proposed in [17] to compute 
the static slice of an aspect-oriented program 
based on the ASDG.

Zhao and Rinard [41] extended the 
dependence-based representation technique for 
AOP [40] to construct a SDG for aspect-oriented 
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program. Zhao [40] had not provided any 
information to handle pointcut. In this paper 
the authors had tried to handle the pointcuts 
by constructing Module Dependence Graph 
(MDG) for each piece of advice, introduction 
and method in aspects and classes. It then 
uses existing techniques for object-oriented 
programs to connect these MDGs at call sites to 
form a partial SDG. Finally, all MDGs of advice 
and the partial SDG are weaved together for that 
method whose behaviour may be affected by 
the advice; hence the final SDG is constructed.

B r a a k  [ 3 3 ]  e x t e n d e d  t h e  A S D G 
proposed by Zhao [40, 41] to include inter-
type declarations in the graph. Each inter-type 
declaration was presented in form of a field or 
a method as a successor of the particular class. 
Then, Braak [33] used the two-phase slicing 
algorithm of Horwitz et al. [12] to find static 
slice of AspectJ program.

Sahu and Mohapatra [31] were the first 
to propose an algorithm for dynamic slicing 
of aspect-oriented programs named as Node-
Marking Dynamic Slicing (NMDS) algorithm. 
They had used an intermediate representation 
of aspect-oriented program called as Extended 
Aspect-oriented System Dependence Graph. 
The EASDG of an aspect-oriented program 
consists of a System Dependence Graph (SDG) 
of non-aspect code and an Aspect Dependence 
Graph (ADG) for aspect code and some 
additional dependence edges. The ADG is 
constructed by combining the advice dependence 
graph, introduction dependence graph, pointcut 
dependence graph and method dependence graph. 
A special vertex called as aspect entry vertex 
used in ADG representing the entry point 
into the aspect. All the members of aspect are 
connected through aspect membership edges to 
the aspect entry vertex. The complete EASDG 
is constructed by connecting the SDG and ADG 

by identifying the weaving vertices using a 
special kind of edge called as weaving edges. 
This EASDG is constructed statically only once 
before the execution of the aspect-oriented 
program. During the execution of program this 
algorithm marks and unmarks the executed 
nodes to calculate the dynamic slice of aspect-
oriented programs.

Mohapatra et  al .  [26] proposed a 
dynamic slicing algorithm for aspect-oriented 
program called Trace Based Dynamic Slice (TBDS) 
algorithm. This algorithm uses a dependence-
based representation called Dynamic Aspect-
oriented Dependence Graph  (DADG) as the 
intermediate representation of program. The 
DADG is an arc-classified digraph where all 
the vertices of the graph correspond to the 
statements and predicates of the program and all 
the edges (arcs) between the vertices represents 
dependence relationship between the statements. 
A DADG consists of control dependence arc, data 
dependence arc and weaving arc as the dependence 
relationship arcs. The construction of DADG 
of an aspect-oriented program is based on the 
analysis of control and data flow of the program 
at run time. Then they had used breadth-first or 
depth-first order graph traversal over DADG to 
compute the dynamic slice with respect to the 
statement of interest (as defined in slicing criterion) 
as the starting point of traversal.

Ray et al. [29] proposed a dynamic slicing 
algorithm for aspect-oriented programs by 
marking and unmarking the edges. Firstly, they 
had constructed an intermediate representation 
called Aspect System Dependence Graph 
(AOSG). AOSG was constructed by combining 
System Dependence Graph (SDG) of non-aspect 
code and Aspect Dependence Graph (ADG) 
of the aspect code with the help of aspect-
membership arcs. Then, they compute the 
dynamic slice by updating AOSG.
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All the above mentioned works were 
concentrated on computing the slice by 
considering the raw code of aspect-oriented 
programs. They have not considered slicing 
of aspect-oriented architectural models. But, 
our algorithm computes the dynamic slice of 
aspect-oriented software at architectural level. 

Lallchandani et  al .  [20] proposed 
an algorithm for computing the dynamic 
slicing for UML architectural model. In their 
approach they considered a generic class and 
sequence diagrams for object-oriented software. 
Then, they have constructed an intermediate 
representation termed as Model Dependency 
Graph (MDG) by combining Class Dependency 
Graph (CDG) and Sequence Dependency 
Graph (SDG) where the CDG and SDG are 
constructed from the generic class and sequence 
diagrams respectively. The slices are computed 
by updating the MDG. But, they have not 
considered any aspect-oriented constructs in 
their intermediate representation as well as in 
the proposed slicing algorithms. In our work, 
we have considered the AOP constructs such 
as pointcuts, advices, joinpoints, etc. both in 
the intermediate representation and the slicing 
algorithm.

CONCLUSION
In this paper, we have proposed a novel 
dynamic slicing algorithm for aspect-oriented 
based UML 2.0 sequence diagrams. We have 
considered the modeling of aspect-oriented 
programs using sequence diagrams. However, 
our work can be easily extended to handle other 
UML 2.0 diagrams and models. We have used 
the Aspect Model Dependency Graph (AMDG) 
as the intermediate program representation. 
Our proposed Architectural Aspect-Oriented 
Dynamic Slicing (AAODS) algorithm is based on 
marking and unmarking the edges of the AMDG 

as and when the dependencies arise and cease at 
run-time. The computed slices can be used for 
studying the impact of design changes, reliability 
prediction, understanding large architectures, 
regression testing, etc. The advantage of our 
approach is that when a request for a slice is 
made, it is already available and it can be readily 
obtained through a mere table looks up. We 
are now extending the intermediate model to 
support both class and sequence diagrams of 
aspect-oriented UML models.
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